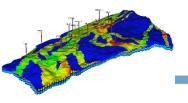


OLYMPUS FIELD DEVELOPMENT OPTIMIZATION CHALLENGE

www.isapp2.com/optimization-challenge

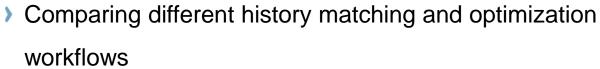


dries.hegen@tno.nl

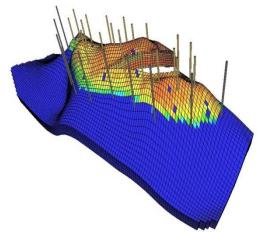
rahul.fonseca@tno.nl

frank.wilschut@tno.nl

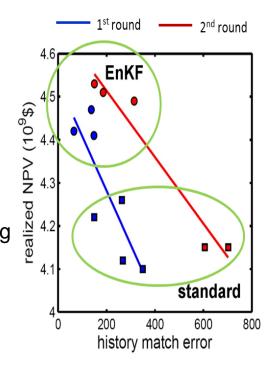
TIMELINE

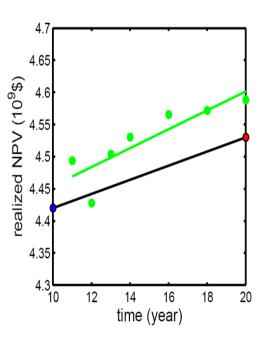

- August/September 2017: Call for Abstracts for OLYMPUS workshop will be opened
- Q1 2018 (exact date to be announced): Abstract deadline workshop
- April 2018: OLYMPUS workshop committee selects workshop program and authors will be informed.
- June 2018: All accepted authors will now have to submit the results obtained for the OLYMPUS challenge
- August 2018: Deadline for paper submission to Computational Geosciences Special Issue
- > September 7, 2018: OLYMPUS workshop after ECMOR, Barcelona.

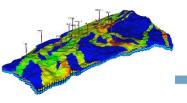
2008 SPE CLOSED-LOOP BENCHMARK



TNO built and managed the 'true' reservoir

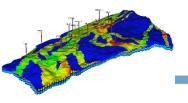

- Steps taken by participants:
 - Do a history match based on 10 years of measurements
 - > Provide a recovery strategy for the next 20 years
 - Repeat these steps at year 20.



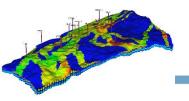

CLOSED LOOP BENCHMARK LEARNINGS

- A good history match increases the probability of increasing ultimate value from the field
- Fully accounting for uncertainty (through ensemble methods)
 increases value
- Increasing the frequency of updating models and strategies increases
 value

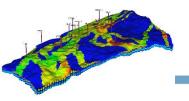
Participant with lowest HM Error and highest NPV: U. Oklahoma, using EnKF and EnOpt



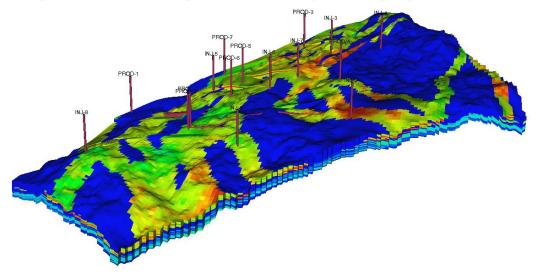
OBJECTIVES FOR OLYMPUS CHALLENGE

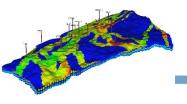

- Aimed at Field Development (FD) Optimization under uncertainty
 - So, no history matching involved
- Questions we aim to address in this challenge are:
 - What added value can be expected from applying optimization methods?
 - What are good workflows?
 - Which are good choices of controls?
 - Which algorithms are best suited?
 - Should FD and well control optimization be considered jointly?

OPTIMIZATION CHALLENGES


- Some controls (wells, drilling order) may naturally appear as integer or binary variables
- Number of wells may not be constant throughout an optimization process
- Non-smoothness of objective function (e.g. due to drilling costs and drilling order)
- Evaluation of different well trajectories: frequent re-computation of well-reservoir connectivity.
- Joint well placement and control optimization is a mixed-control problem
- Time-dependent nonlinear input and/or output constraints
- High level of uncertainty involved during the early FD stage

OLYMPUS MODEL CHARACTERISTICS

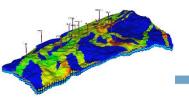

- Faulting
 - Makes regular well patterns suboptimal
 - Modest fault throws, allowing contact between different reservoir zones across the fault
- Vertical barrier
 - Different placement and operating strategies required for top and bottom reservoirs
- Channels
 - Risk of fast water breakthrough
 - Connect multiple sand with single well
 - Different channel densities
- Lateral coarsening
 - A lateral trend with a reverse trend in NTG (uniform STOIIP) -> requires different well density; modeled as a series of clinoforms


OLYMPUS MODEL CHARACTERISTICS

- An ensemble of 50 geological model realizations available to anyone considering participation
 - Many requests for input files received so far

- Reference well placement strategy provided for the well control optimization exercise.
 - Uses 11 production wells and 7 injection wells to operate the reservoir model.
 - This strategy was developed using traditional reservoir engineering techniques based on a single model chosen from the ensemble of model realizations

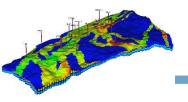
OLYMPUS MODEL CHARACTERISTICS


> 9 km x 3 km x 50 m (cells 50 m x 50 m x 3 m)

~200,000 active cells, grid is not regular

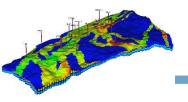
- Run time 10-15 minutes (ECLIPSE, 20 years)
- Only oil and water in the reservoir

Decks available for ECLIPSE, IMEX, OPM-FLOW, AD-GPRS and INTERSECT



OLYMPUS CHALLENGE DEFINITION

Three optimization exercises (a single economic model applies to all of them):

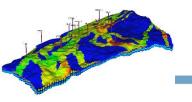

- 1. Well Control Optimization
 - > Fixed inj-prod wells configuration, rates and BHP as controls
- 2. Field Development Optimization
 - Produce a field development plan including drilling/completion schedule, optimize well trajectory but use a reactive control strategy
- 3. Joint Optimization of Well Placement and Control
 - Combine challenge #1 and #2.

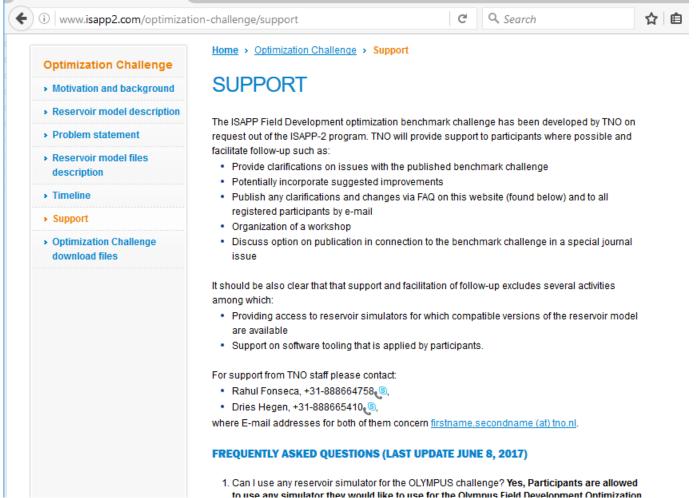
FINAL WORKSHOP

- September 7, 2018: Olympus workshop, very likely to take place in Barcelona, in conjunction with ECMOR 2018 (ECMOR finishes Sept 6).
 - Presentation and discussion on results obtained
 - Participants for this workshop will have the opportunity to report their results in Computational Geosciences Special Issue

ACKNOWLEDGEMENTS

- Support from ISAPP-2 consortium partners ENI, Statoil, Petrobras along with support from Delft University of Technology
- All contributions and advice from Kees Geel (TNO) during the building of the ensemble of OLYMPUS models.
- Feedback from
 - all foreseen participants who registered for the OLYMPUS challenge
 - participants at the TNO Optimization Workshop held on 2nd September
 2016 in Utrecht, The Netherlands





SEE YOU IN BARCELONA, 7 SEPT 2018

